
II
The Building
Blocks of a

Model-Driven
Design

evans_pt02.qxd 7/30/2003 8:06 PM Page 63

To keep a software implementation crisp and in lockstep with a
model, in spite of messy realities, you must apply the best practices
of modeling and design. This book is not an introduction to object-
oriented design, nor does it propose radical design fundamentals.
Domain-driven design shifts the emphasis of certain conventional
ideas.

Certain kinds of decisions keep the model and implementation
aligned with each other, each reinforcing the other’s effectiveness.
This alignment requires attention to the details of individual ele-
ments. Careful crafting at this small scale gives developers a steady
platform from which to apply the modeling approaches of Parts III
and IV.

The design style in this book largely follows the principle of
“responsibility-driven design,” put forward in Wirfs-Brock et al.
1990 and updated in Wirfs-Brock 2003. It also draws heavily (espe-
cially in Part III) on the ideas of “design by contract” described in
Meyer 1988. It is consistent with the general background of other
widely held best practices of object-oriented design, which are de-
scribed in such books as Larman 1998.

As a project hits bumps, large or small, developers may find
themselves in situations that make those principles seem inapplica-
ble. To make the domain-driven design process resilient, developers
need to understand how the well-known fundamentals support
MODEL-DRIVEN DESIGN, so they can compromise without derailing.

The material in the following three chapters is organized as a
“pattern language” (see Appendix A), which will show how subtle
model distinctions and design decisions affect the domain-driven de-
sign process.

The diagram on the top of the next page is a navigation map. It
shows the patterns that will be presented in this section and a few of
the ways they relate to each other.

Sharing these standard patterns brings order to the design and
makes it easier for team members to understand each other’s work.
Using standard patterns also adds to the UBIQUITOUS LANGUAGE,
which all team members can use to discuss model and design decisions.

Developing a good domain model is an art. But the practical design
and implementation of a model’s individual elements can be relatively
systematic. Isolating the domain design from the mass of other concerns

64 PA RT I I

evans_pt02.qxd 7/30/2003 8:06 PM Page 64

in the software system will greatly clarify the design’s connection to the
model. Defining model elements according to certain distinctions
sharpens their meanings. Following proven patterns for individual ele-
ments helps produce a model that is practical to implement.

Elaborate models can cut through complexity only if care is
taken with the fundamentals, resulting in detailed elements that the
team can confidently combine.

65T H E B U I L D I N G B L O C K S O F A M O D E L - D R I V E N D E S I G N

encapsulate with

MODEL-DRIVEN

DESIGN

express model with

isolate domain with

encapsulate with

ENTITIES

VALUE OBJECTS

LAYERED

ARCHITECTURE

AGGREGATES

REPOSITORIES

act as root of

SMART UI

X

FACTORIES

encapsulate with

express model with

encapsulate with

mutually exclusive

choices

access with

maintain integrity with

access with
SERVICES

express model with

A navigation map of the language of MODEL-DRIVEN DESIGN

evans_pt02.qxd 7/30/2003 8:06 PM Page 65

evans_pt02.qxd 7/30/2003 8:06 PM Page 66

