Effective Aggregate Design
Q Part lll: Gaining Insight Through Discovery

Vaughn Vernonyvernon@shiftmethod.com

Follow on Twitter: @VaughnVernon

Part Il discussed how [DDjggregateseference other
aggregatesand how to leverage eventual consistency to
keep separateggregateinstances in harmony. In Part llI
we'll see how adhering to the rulesagfgregateaffects the
design of a Scrum model. We'll see how the prdgsn
rethinks their design again, applying new-foundtegues.
That effort leads to the discovery of new insights the
model. Their various ideas are tried and then sgued.

Rethinking the Design, Again

After the refactoring iteration that broke up thege cluster
Pr oduct , theBackl ogl t emnow stands alone as its

own aggregate It reflects the model presented in Figure 7.

The team composed a collectionT@fsk instances inside
theBack! ogl t emaggregate EachBackl ogl t emhas

a globally unigue identity, itBackl ogl t eml d. All asso-
ciations to otheaggregatesare inferred through identities.
That means its pareRt oduct , theRel ease it is sched-
uled within, and th&pr i nt to which it is committed, are
referenced by identities. It seems fairly smalltiWhe
team now jazzed about designing snagijregates could
they possibly overdo it in that direction?

{Laggregate rootd> (value object))
Backb gitem Productid
Lvale object)? status -
Backbgitemld [story rohe abject)
storyPoints Releaseld
summary
type {Cvoive objectd >
Sprintld
y 0"
(entityd (value object))
Task ExtimationLagEntry
Lvale object)? 0.*
< deseription =, | description
Taskid -) <)
hoursRemain ing hotrsRemaining
nome name:
volunteer volun feer

Figure 7: The fully compose®ackl| ogl t emaggregate

Despite the good feeling coming out of that presidara-
tion, there is still some concern. For example sther y
attribute allows for a good deal of text. Teamselieping
agile stories won't write lengthy prose. Even beré is an
optional editor component that supports writindnise
case definitions. Those could be many thousantiytes.
It's worth considering the possible overhead.

Given this potential overhead and the errors ajreaade

in designing the large cluster oduct of Figures 1 and 3
in Part |, the team is now on a mission to redheesize of
everyaggregatein thebounded context Crucial questions
arise. Is there a true invariant betwdackl| ogl t emand
Task that this relationship must maintain? Or is thes y
another case where the association can be furtbkeib
apart, with two separatggregateseing safely formed?
What is the total cost of keeping the design &®it

A key to making a proper determination lies in tiéquit-
ous language Here is where an invariant is stated:

- When progress is made on a backlog item task, the
team member will estimate task hours remaining.

« When a team member estimates that zero hours
are remaining on a specific task, the backlog item
checks all tasks for any remaining hours. If no
hours remain on any tasks, the backlog item status
is automatically changed to done.

* When a team member estimates that one or more
hours are remaining on a specific task and the
backlog item's status is already done, the status i
automatically regressed.

This sure seems like a true invariant. The backg's
correct status is automatically adjusted and coralyiele-
pendent on the total number of hours remainingliitsa
tasks. If the total number of task hours and treklog item
status are to remain consistent, it seems as ifr€ig does
stipulate the corre@tggregateconsistency boundary.
However, the team should still determine what theent
cluster could cost in terms of performance andadkty.
That would be weighed against what they might sbihe
backlog item status could be eventually consistéttt the
total task hours remaining.

Some will see this as a classic opportunity toawsntual

consistency, but we won't jump to that conclusigst yet.

Let's analyze a transactional consistency apprdheh,in-
vestigate what could be accomplished using evectua

sistency. We can then each draw our own conclussco

which approach is preferred.

Estimating Aggregate Cost

As Figure 7 shows, eadrask holds a collection of a
series ofEst i mat i onLogEnt ry instances. These logs

-11 -

model the specific occasions when a team memberseat
new estimation of hours remaining. In practicaingrhow
manyTask elements will eacBackl ogl t emhold, and
how manyEst i mat i onLogEnt ry elements will a given
Task hold? It's hard to say exactly. It's largely a suga

of how complex any one task is and how long a sasts.
But some back-of-the-envelope calculations (BOTightn
help [Pearls].

Task hours are usually re-estimated each day afieam
member works on a given task. Let's say that npratts
are either two or three weeks in length. There bglllonger
sprints, but a two-to-three-week timespan is common
enough. So let's select a number of days somevimere
between 10 days and 15 days. Without being todggec
12 days works well since there may actually be ne
week than three-week sprints.

Next consider the number of hours assigned to tesh
Remembering that since tasks must be broken daten in
manageable units, we generally use a number ohour
between 4 and 16. Normally if a task exceeds adl-h
estimate, Scrum experts suggest breaking it dowhédu
But using 12 hours as a first test makes it edsisimulate
work evenly. We can say that tasks are worked oorfe
hour each of the 12 days of the sprint. Doing sorfs
more complex tasks. So we'll figure 12 re-estimeiper
task, assuming that each task starts out with Li2sho
allocated to it.

The question remains: How many tasks would be redui
per backlog item? That too is a difficult questtoranswer.
What if we thought in terms of there being two loee
tasks required pdayer or hexagonal port-adapter
[Cockburn] for a given feature slice? For example,
might count three fouser interface layer, two for theap-
plication layer, three for thalomain layer, and three for
theinfrastructure layer . That would bring us to 11 total
tasks. It might be just right or a bit slim, but'veealready
erred on the side of numerous task estimationss betmp
it up to 12 tasks per backlog item to be more &bewith
that we are allowing for 12 tasks, each with 12westion
logs, orl44 total collected objects per backlog iténhile
this may be more than the norm, it gives us a chlB®RTE
calculation to work with.

There is another variable to be considered. If ®oeMpert
advice to define smaller tasks is commonly followieéd
would change things somewhat. Doubling the number o
tasks (24) and halving the number of estimationdoties
(6) would still produce 144 total objects. Howeviewyould
cause more tasks to be loaded (24 rather thanutRjgdall
estimation requests, consuming more memory on deh.
team will try various combinations to see if ther@s any
significant impact on their performance tests. ®utart
they will use 12 tasks of 12 hours each.

Common Usage Scenarios

Now it's important to consider common usage scesari
How often will one user request need to load all @8jects
into memory at once? Would that ever happen? tsee
not, but they need to check. If not, what's theljikhigh
end count of objects? Also, will there typically foelti-cli-
ent usage that causes concurrency contention ddolgac
items? Let's see.

The following scenarios are based on the use oétdte
for persistence. Also, eaemtity type has its own optimist-
ic concurrency version attribute. This is workabésause
the changing status invariant is managed orBtek| og-

| t emroot entity. When the status is automatically altered
(to done or back to committed) theot's version is
bumped. Thus, changes to tasks can happen indegbnde
of each other and without impacting tlu®t each time one
is modified, unless it results in a status chaifgkee fol-
lowing analysis could need to be revisited if usiiog ex-
ample, document-based storage, sincadbeis effect-
ively modified every time a collected part is maeiif.)

When a backlog item is first created, there are zen-
tained tasks. Normally it is not until sprint plama that
tasks are defined. During that meeting tasks ametified
by the team. As each one is called out, a team reeatdds
it to the corresponding backlog item. There is aedfor
two team members to contend with each other foathe
gregate as if racing to see who can enter new tasks the
quickest. That would cause collision and one oftiiee re-
guests would fail (for the same reason adding varfmarts
to Pr oduct simultaneously previously failed). However,
the two team members would probably soon figurehowt
counterproductive their redundant work is.

If the developers learned that multiple users dieéu
regularly want to add tasks together, it would gfeathe
analysis significantly. That understanding couldnieali-
ately tip the scales in favor of breakiBgckl ogl t em
andTask into two separataggregates On the other hand,
this could also be a perfect time to tune the Hibtr map-
ping by settingppt i m sti c-1 ock option tof al se.
Allowing tasks to grow simultaneously could makasein
this case, especially if they don't pose perforraaantd
scalability issues.

If tasks are at first estimated at zero hours atet lupdated
to an accurate estimate, we still don't tend teeerpce
concurrency contention, although this would add adhdi-
tional estimation log entry, pushing our BOTE totaal.
Simultaneous use here does not change the bactk&log i
status. Again, it only advances to done by goiogfr
greater-than zero to zero hours, or regressesnonébed if
already done and hours are changed from zero t@ione
more—two uncommon events.

Will daily estimations cause problems? On day drth®

-12 -

sprint there are usually zero estimation logs givan task
of a backlog item. At the end of day one, each nidar
team member working on a task reduces the estimated
hours by one. This adds a new estimation log th ek,
but the backlog item's status remains unaffectbdrdis
never contention on a task because just one teanbere
adjusts its hours. It's not until day 12 that wactethe
point of status transition. Still, as each of afiytdsks are
reduced to zero hours, the backlog item's statosetis
altered. It's only the very last estimation, thd"1dn the
12" task, that causes automatic status transitionet@one
state.

This analysis has led the team to an importanizag#&in.
Even if they alter the usage scenarios, acceleyaisk
completion by double (six days), or even mixingptcom-
pletely, it doesn't change anything. It's alwaysfihal es-
timation that transitions the status, which modifileeroot.
This seems like a safe design, although memoryheasr
is still in question.

Memory Consumption

Now to address the memory consumption. Importarg s
that estimations are logged by datevalsie objects If a
team member re-estimates any number of times oxgies
day, only the most recent estimation is retaindt latest
value of the same date replaces the previous one iodkhe
lection. At this point there's no requirement sick task es-
timation mistakes. There is the assumption thask will
never have more estimation log entries than thebeurof
days the sprint is in progress. That assumptiongésif
tasks were defined one or more days before thatguen-
ning meeting, and hours were re-estimated on atiyosie
earlier days. There would be one extra log for edmhthat
occurred.

What about the total number of tasks and estimation
memory for each re-estimation? When using lazyitaad
for the tasks and estimation logs, we would haveasy
as 12 plus 12 collected objects in memory at ane per
request. This is because all 12 tasks would besibadhen
accessing that collection. To add the latest esitimaog
entry to one of those tasks, we'd have to loaddfiection
of estimation log entries. That would be up to aeotl2
objects. In the end theggregatedesign requires one back-
log item, 12 tasks, and 12 log entries, or 25 dbjetaxim-
um total. That's not very many; it's a snajjregate An-
other factor is that the higher end of objects.(25) is not
reached until the last day of the sprint. Duringchnof the
sprint theaggregateis even smaller.

Will this design cause performance problems becafise
lazy loads? Possibly, because it actually requiweslazy
loads, one for the tasks and one for the estimddign
entries for one of the tasks. The team will haveesh to
investigate the possible overhead of the multipteHes.

There's another factor. Scrum enables teams taiengrat
in order to identity the right planning model fbetr prac-
tices. As explained in [Story Points], experientegins
with a well-known velocity can estimate using stpoints
rather than task hours. As they define each thsly, tan
assign just one hour to each task. During the sgrey
will re-estimate only once per task, changing ooerto
zero when the task is completed. As it pertairesggreg-
ate design, using story points reduces the total nurabe
estimation logs per task to just one, and almastieates
memory overhead. Later oRrojectOvationdevelopers
will be able to analytically determine (on averabejv
many actual tasks and estimation log entries @esback-
log item by examining real production data.

The forgoing analysis was enough to motivate thentéo
test against their BOTE calculations. After incarsive
results, however, they decide that there weretetilmany
variables to be confident that this design dealé wi¢h
their concerns. There were enough unknowns to densi
an alternative design.

Exploring Another Alternative Design

To be thorough, the team wants to think throughtwimey
would have to do to makeask an independergggregate
and if that would actually work to their benefitHét they
envision is seen in Figure 8. Doing this would reelpart
composition overhead by 12 objects and reducelty
overhead. In fact, this design gives them the optigo
eagerly load estimation log entries in all casekat would
perform best.

Wvae objecd) aggregate ot Gvalee sbjech) aggregate root?) Gvalee sbjech)
Taskld Task Productid Bockbgitem Releaseld
ot
description status
PoursRemaining .| Cvaive objec> | e story) | (Cvalue object?)
vame Backbgitemld soryboints Spriatid
volunfeer wmmary
fype
T
CCvalve objech)
EstimatlonLogEntry
descriptin
hoursRemaining
name
volin teer

Figure 8 Backl ogl t emandTask modeled as separaggregates

The developers agree not to modify sepaaggregates
both theTask and theBackl ogl t em in the same trans-
action. They must determine if they can perforneeas-
sary automatic status change within an acceptabée t
frame. They'd be weakening the invariant's consiste
since the status can't be consistent by transadtvonild
that be acceptable? They discuss the matter wétlldh
main experts and learn that some delay betweefinthle
zero-hour estimate and the status being set to, @mtevisa
versa, would be acceptable.

-13 -

Implementing Eventual Consistency

Here is how it could work. WhenTask processes an
est i mat eHour sRemai ni ng() command it publishes

a correspondingomain event It does that already, but the

team would now leverage tlewentto achieve eventual
consistency. Theventis modeled with the following
properties:

public class TaskHour sRemai ni ngEsti mated inpl enents Domai nEvent {
private Date occurredOn;
private Tenantld tenantld;
private Backl ogltenl d backl oglten d;
private Taskld taskld;
private int hoursRemai ni ng;

A specialized subscriber would now listen for thasd
delegate to domain serviceto coordinate the consistency
processing. Theervicewould:

« Use theBackl ogl t emReposi t ory to retrieve
the identifiedBackl ogl t em

« Use theTaskReposi t ory to retrieve alllTask
instances associated with the identified
Backl ogltem

« Execute thdackl ogl t emcommand named
est i mat eTaskHour sRemai ni ng() passing
thedomain event'shour sRenai ni ng and the
retrievedTask instances. ThBackl ogl t em

the stale status and allow users to deal with theaVin-
consistency. That could easily be perceived agjadat
least be pretty annoying.

The view could use a background Ajax polling redquiest
that could be quite inefficient. Since the view @ament
could not easily determine exactly when checkirrgafo
status update is necessary, most Ajax pings woalidnime-
cessary. Using our BOTE numbers, 143 of 144 revesti
tions would not cause the status update, whicHas &f re-
dundant requests on the web tier. With the righteeside
support the clients could instead depend on Coakia
Ajax Push). Although a nice challenge, that introekia
completely new technology that the team has no rexpee
using.

On the other hand, perhaps the best solution isithplest.
They could opt to place a visual cue on the sctieanin-
forms the user that the current status is uncerfdia view
could suggest a time frame for checking back aeséfing.
Alternatively, the changed status will probably whan the
next rendered view. That's safe. The team would tee
run some user acceptance tests, but it looks hbpefu

Is It the Team Member's Job?

One important question has thus far been completedy-
looked. Whose job is it to bring a backlog itentatss into
consistency with all remaining task hours? Doesaant
member using Scrum care if the parent backlog #gem'

may transition its status depending on parameters status transitions to done just as they set thedak's

The team should find a way to optimize this. Thed¢hstep

design requires allask instances to be loaded every time

a re-estimation occurs. When using our BOTE andadv
cing continuously toward done, 143 out of 144 tirthedt's
unnecessary. This could be optimized this pretsflydn-
stead of using theepository to get allTask instances,
they could simply ask it for the sum of @thsk hours as
calculated by the database:

public class TaskRepositorylnpl inplenents TaskRepository {

public int total Backl ogltenTaskHour sRemai ni ng(
Tenant|d aTenant!d,
Backl ogl tem d aBackl oglten d) {

Query query = session. createQuery(
"sel ect sun(task.hoursRenuining) from Task task "
+ "where task.tenantld = ? and "
+ "task. backlogltemd = ?2");

Eventual consistency complicates the user interfaloit.
Unless the status transition can be achieved witisw
hundred milliseconds, how would the user interfdisplay
the new state? Should they place business lodheirview
to determine the current status? That would cariet#
smart Ul anti-pattern. Perhaps the view would flisplay

hours to zero? Will they always know they are wogki
with the last task that has remaining hours? Perbizgy
will and perhaps it is the responsibility of eaehrh mem-
ber to bring each backlog item to official compdeti

On the other hand, what if there is ever anothejept
stakeholder involved? For example, the product avene
some other person may desire to check the candidate
log item for satisfactory completion. Maybe theynivio
use the feature on a continuous integration sdinger If
they are happy with the developers' claim of cotiqhe
they will manually mark the status as done. Thitabely
changes the game, indicating that neither trarsaeadtnor
eventual consistency is necessary. Tasks coulglhe
from their parent backlog item because this newcase
allows it. However, if it is really the team membdehat
should cause the automatic transition to doneoitlds
mean that tasks should probably be composed wiitiein
backlog item to allow for transactional consistency
Interestingly, there is no clear answer here ejtivbich
probably indicates that it should be an optionglliaption
preference. Leaving tasks within their backlog itsatves
the consistency problem, and it's a modeling chthiaécan
support both automatic or manual status transitions

This valuable exercise has uncovered a completlyas-
pect of the domain. It seems like teams shouldbteta

-14 -

configure a work flow preference. They aren't gdimgm-
plement such a feature now, but they will promoferi
further discussion. Asking 'whose job is it?' ladrh to a
few vital perceptions about their domain.

Next, one of the developers made a very practiogdss-
tion as an alternative to this whole analysishéyt are
chiefly concerned with the possible overhead ofsther y
attribute, why not do something about that spediify®
They could reduce the total storage capacity fessthor y
and in addition create a naygeCaseDef i ni ti on
property too. They could design it to lazy loadicsi much
of the time it would never be used. Or they cowldre
design it as a separaggregate only loading it when
needed. With that idea they realized this coula geod
time to break the rule to reference exteaggregatesonly
by identity. It seems like a suitable modeling deoio use
a direct object reference, and declare its objeletional
mapping so as to lazily load it. Perhaps that makese.

Time for Decisions

Based on all this analysis, currently the teanhisrg
away from splittingTask fromBackl ogl t em They
can't be certain that splitting it now is worth thdra effort,
the risk of leaving the true invariant unprotectedallow-
ing users to experience a possible stale statieigiew.

The currenbggregate as they understand it, is fairly small

as is. Even if their common worse case loaded €t
rather than 25, it's still a reasonably sized elugtor now
they will plan around the specialized use casenitéin
holder. Doing that is a quick win with lots of benefits.
adds little risk, because it will work now, andtive future
if they decide to spliTask fromBackl ogl t em

The option to split it in two remains in their Ippcket just
in case. After further experimentation with therent
design, running it through performance and loatstes
well investigating user acceptance with an evettain-
sistent status, it will become more clear whichrapph is
best. The BOTE numbers could prove to be wrong if i

production theaggregateis larger than imagined. If so, the

team will no doubt split it into two.

If you were a member of tHerojectOvationteam, which
modeling option would you have chosen?

Summary

Don't shy away from discovery sessions as demdsstra
above. That entire effort would require 30 minutey] per-
haps as much as 60 minutes at worse case. It'swaehh
the time to gain deeper insight into yaare domain

Using a real-world example domain model, we have

examined how crucial it is to follow the rules bfimb
when designingggregates

« Model True Invariants In Consistency Boundaries

- Design Small Aggregates
- Reference Other Aggregates By Identity

» Use Eventual Consistency Outside the Boundary
(after asking whose job it is)

If we adhere to the rules, we'll have consistenbgne ne-
cessary, and support optimally performing and lyigicll-
able systems, all while capturing thkiquitous language
of our business domain in a carefully crafted model

Copyright © 2011 Vaughn Vernon. All rights reserved
Effective Aggregate Desigs licensed under th@reative
Commons Attribution-NoDerivs 3.0 Unported License
http://creativecommons.org/licenses/by-nd/3.0/

Acknowledgments

Eric Evans and Paul Rayner did several detailewesvof
this essay. | also received feedback from Udi Dakarg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Oberg.

References

[Cockburn] Alistair Cockburn; Hexagonal Architeatyr
http://alistair.cockburn.us/Hexagonal+architecture

[DDD] Eric Evans;Domain-Driven Design—Tackling
Complexity in the Heart of Software

[Pearls] Jon Bentley?rogramming Pearls, Second
Edition; http://cs.belllabs.com/cm/cs/pearls/bote.html

[Story Points] Jeff Sutherlan&tory Points: Why are they
better than hours?
http://scrum.jeffsutherland.com/2010/04/story-psinty-
are-they-better-than.html

Biography

Vaughn Vernon is a veteran consultant, providing
architecture, development, mentoring, and trairsieiyices.
This three-part essay is based on his upcoming book
implementing domain-driven design. HgCon San
Francisco 201(presentation onontext mappingis
available on the DDD Community site:
http://dddcommunity.org/library/vernon_2010aughn
blogs herehttp://vaughnvernon.cpyou can reach him by
email hereyvernon@shiftmethod.conand follow him on
Twitter here: @VaughnVernon

-15 -

