
Effective Aggregate Design
Part III: Gaining Insight Through Discovery

Vaughn Vernon: vvernon@shiftmethod.com

Follow on Twitter: @VaughnVernon

Part II discussed how [DDD] aggregates reference other
aggregates, and how to leverage eventual consistency to
keep separate aggregate instances in harmony. In Part III
we'll see how adhering to the rules of aggregate affects the
design of a Scrum model. We'll see how the project team
rethinks their design again, applying new-found techniques.
That effort leads to the discovery of new insights into the
model. Their various ideas are tried and then superseded.

Rethinking the Design, Again

After the refactoring iteration that broke up the large cluster
Product, the BacklogItem now stands alone as its
own aggregate. It reflects the model presented in Figure 7.
The team composed a collection of Task instances inside
the BacklogItem aggregate. Each BacklogItem has
a globally unique identity, its BacklogItemId. All asso-
ciations to other aggregates are inferred through identities.
That means its parent Product, the Release it is sched-
uled within, and the Sprint to which it is committed, are
referenced by identities. It seems fairly small. With the
team now jazzed about designing small aggregates, could
they possibly overdo it in that direction?

Figure 7: The fully composed BacklogItem aggregate.

Despite the good feeling coming out of that previous itera-
tion, there is still some concern. For example, the story
attribute allows for a good deal of text. Teams developing
agile stories won't write lengthy prose. Even so, there is an
optional editor component that supports writing rich use
case definitions. Those could be many thousands of bytes.
It's worth considering the possible overhead.

Given this potential overhead and the errors already made
in designing the large cluster Product of Figures 1 and 3
in Part I, the team is now on a mission to reduce the size of
every aggregate in the bounded context. Crucial questions
arise. Is there a true invariant between BacklogItem and
Task that this relationship must maintain? Or is this yet
another case where the association can be further broken
apart, with two separate aggregates being safely formed?
What is the total cost of keeping the design as it is?

A key to making a proper determination lies in the ubiquit-
ous language. Here is where an invariant is stated:

• When progress is made on a backlog item task, the
team member will estimate task hours remaining.

• When a team member estimates that zero hours
are remaining on a specific task, the backlog item
checks all tasks for any remaining hours. If no
hours remain on any tasks, the backlog item status
is automatically changed to done.

• When a team member estimates that one or more
hours are remaining on a specific task and the
backlog item's status is already done, the status is
automatically regressed.

This sure seems like a true invariant. The backlog item's
correct status is automatically adjusted and completely de-
pendent on the total number of hours remaining on all its
tasks. If the total number of task hours and the backlog item
status are to remain consistent, it seems as if Figure 7 does
stipulate the correct aggregate consistency boundary.
However, the team should still determine what the current
cluster could cost in terms of performance and scalability.
That would be weighed against what they might save if the
backlog item status could be eventually consistent with the
total task hours remaining.

Some will see this as a classic opportunity to use eventual
consistency, but we won't jump to that conclusion just yet.
Let's analyze a transactional consistency approach, then in-
vestigate what could be accomplished using eventual con-
sistency. We can then each draw our own conclusion as to
which approach is preferred.

Estimating Aggregate Cost

As Figure 7 shows, each Task holds a collection of a
series of EstimationLogEntry instances. These logs

- 11 -



model the specific occasions when a team member enters a
new estimation of hours remaining. In practical terms, how
many Task elements will each BacklogItem hold, and
how many EstimationLogEntry elements will a given
Task hold? It's hard to say exactly. It's largely a measure
of how complex any one task is and how long a sprint lasts.
But some back-of-the-envelope calculations (BOTE) might
help [Pearls].

Task hours are usually re-estimated each day after a team
member works on a given task. Let's say that most sprints
are either two or three weeks in length. There will be longer
sprints, but a two-to-three-week timespan is common
enough. So let's select a number of days somewhere in
between 10 days and 15 days. Without being too precise,
12 days works well since there may actually be more two-
week than three-week sprints.

Next consider the number of hours assigned to each task.
Remembering that since tasks must be broken down into
manageable units, we generally use a number of hours
between 4 and 16. Normally if a task exceeds a 12-hour
estimate, Scrum experts suggest breaking it down further.
But using 12 hours as a first test makes it easier to simulate
work evenly. We can say that tasks are worked on for one
hour each of the 12 days of the sprint. Doing so favors
more complex tasks. So we'll figure 12 re-estimations per
task, assuming that each task starts out with 12 hours
allocated to it.

The question remains: How many tasks would be required
per backlog item? That too is a difficult question to answer.
What if we thought in terms of there being two or three
tasks required per layer or hexagonal port-adapter
[Cockburn] for a given feature slice? For example, we
might count three for user interface layer, two for the ap-
plication layer, three for the domain layer, and three for
the infrastructure layer . That would bring us to 11 total
tasks. It might be just right or a bit slim, but we've already
erred on the side of numerous task estimations. Let's bump
it up to 12 tasks per backlog item to be more liberal. With
that we are allowing for 12 tasks, each with 12 estimation
logs, or 144 total collected objects per backlog item. While
this may be more than the norm, it gives us a chunky BOTE
calculation to work with.

There is another variable to be considered. If Scrum expert
advice to define smaller tasks is commonly followed, it
would change things somewhat. Doubling the number of
tasks (24) and halving the number of estimation log entries
(6) would still produce 144 total objects. However, it would
cause more tasks to be loaded (24 rather than 12) during all
estimation requests, consuming more memory on each. The
team will try various combinations to see if there was any
significant impact on their performance tests. But to start
they will use 12 tasks of 12 hours each.

Common Usage Scenarios

Now it's important to consider common usage scenarios.
How often will one user request need to load all 144 objects
into memory at once? Would that ever happen? It seems
not, but they need to check. If not, what's the likely high
end count of objects? Also, will there typically be multi-cli-
ent usage that causes concurrency contention on backlog
items? Let's see.

The following scenarios are based on the use of Hibernate
for persistence. Also, each entity type has its own optimist-
ic concurrency version attribute. This is workable because
the changing status invariant is managed on the Backlog-
Item root entity. When the status is automatically altered
(to done or back to committed) the root's version is
bumped. Thus, changes to tasks can happen independently
of each other and without impacting the root each time one
is modified, unless it results in a status change. (The fol-
lowing analysis could need to be revisited if using, for ex-
ample, document-based storage, since the root is effect-
ively modified every time a collected part is modified.)

When a backlog item is first created, there are zero con-
tained tasks. Normally it is not until sprint planning that
tasks are defined. During that meeting tasks are identified
by the team. As each one is called out, a team member adds
it to the corresponding backlog item. There is no need for
two team members to contend with each other for the ag-
gregate, as if racing to see who can enter new tasks the
quickest. That would cause collision and one of the two re-
quests would fail (for the same reason adding various parts
to Product simultaneously previously failed). However,
the two team members would probably soon figure out how
counterproductive their redundant work is.

If the developers learned that multiple users do indeed
regularly want to add tasks together, it would change the
analysis significantly. That understanding could immedi-
ately tip the scales in favor of breaking BacklogItem
and Task into two separate aggregates. On the other hand,
this could also be a perfect time to tune the Hibernate map-
ping by setting optimistic-lock option to false.
Allowing tasks to grow simultaneously could make sense in
this case, especially if they don't pose performance and
scalability issues.

If tasks are at first estimated at zero hours and later updated
to an accurate estimate, we still don't tend to experience
concurrency contention, although this would add one addi-
tional estimation log entry, pushing our BOTE to 13 total.
Simultaneous use here does not change the backlog item
status. Again, it only advances to done by going from
greater-than zero to zero hours, or regresses to committed if
already done and hours are changed from zero to one or
more—two uncommon events.

Will daily estimations cause problems? On day one of the

- 12 -



sprint there are usually zero estimation logs on a given task
of a backlog item. At the end of day one, each volunteer
team member working on a task reduces the estimated
hours by one. This adds a new estimation log to each task,
but the backlog item's status remains unaffected. There is
never contention on a task because just one team member
adjusts its hours. It's not until day 12 that we reach the
point of status transition. Still, as each of any 11 tasks are
reduced to zero hours, the backlog item's status is not
altered. It's only the very last estimation, the 144th on the
12th task, that causes automatic status transition to the done
state.

This analysis has led the team to an important realization.
Even if they alter the usage scenarios, accelerating task
completion by double (six days), or even mixing it up com-
pletely, it doesn't change anything. It's always the final es-
timation that transitions the status, which modifies the root.
This seems like a safe design, although memory overhead
is still in question.

Memory Consumption

Now to address the memory consumption. Important here is
that estimations are logged by date as value objects. If a
team member re-estimates any number of times on a single
day, only the most recent estimation is retained. The latest
value of the same date replaces the previous one in the col-
lection. At this point there's no requirement to track task es-
timation mistakes. There is the assumption that a task will
never have more estimation log entries than the number of
days the sprint is in progress. That assumption changes if
tasks were defined one or more days before the sprint plan-
ning meeting, and hours were re-estimated on any of those
earlier days. There would be one extra log for each day that
occurred.

What about the total number of tasks and estimations in
memory for each re-estimation? When using lazy loading
for the tasks and estimation logs, we would have as many
as 12 plus 12 collected objects in memory at one time per
request. This is because all 12 tasks would be loaded when
accessing that collection. To add the latest estimation log
entry to one of those tasks, we'd have to load the collection
of estimation log entries. That would be up to another 12
objects. In the end the aggregate design requires one back-
log item, 12 tasks, and 12 log entries, or 25 objects maxim-
um total. That's not very many; it's a small aggregate. An-
other factor is that the higher end of objects (e.g. 25) is not
reached until the last day of the sprint. During much of the
sprint the aggregate is even smaller.

Will this design cause performance problems because of
lazy loads? Possibly, because it actually requires two lazy
loads, one for the tasks and one for the estimation log
entries for one of the tasks. The team will have to test to
investigate the possible overhead of the multiple fetches.

There's another factor. Scrum enables teams to experiment
in order to identity the right planning model for their prac-
tices. As explained in [Story Points], experienced teams
with a well-known velocity can estimate using story points
rather than task hours. As they define each task, they can
assign just one hour to each task. During the sprint they
will re-estimate only once per task, changing one hour to
zero when the task is completed. As it pertains to aggreg-
ate design, using story points reduces the total number of
estimation logs per task to just one, and almost eliminates
memory overhead. Later on, ProjectOvation developers
will be able to analytically determine (on average) how
many actual tasks and estimation log entries exist per back-
log item by examining real production data.

The forgoing analysis was enough to motivate the team to
test against their BOTE calculations. After inconclusive
results, however, they decide that there were still too many
variables to be confident that this design deals well with
their concerns. There were enough unknowns to consider
an alternative design.

Exploring Another Alternative Design

To be thorough, the team wants to think through what they
would have to do to make Task an independent aggregate,
and if that would actually work to their benefit. What they
envision is seen in Figure 8. Doing this would reduce part
composition overhead by 12 objects and reduce lazy load
overhead. In fact, this design gives them the option to
eagerly load estimation log entries in all cases if that would
perform best.

Figure 8: BacklogItem and Task modeled as separate aggregates.

The developers agree not to modify separate aggregates,
both the Task and the BacklogItem, in the same trans-
action. They must determine if they can perform a neces-
sary automatic status change within an acceptable time
frame. They'd be weakening the invariant's consistency
since the status can't be consistent by transaction. Would
that be acceptable? They discuss the matter with the do-
main experts and learn that some delay between the final
zero-hour estimate and the status being set to done, and visa
versa, would be acceptable.

- 13 -



Implementing Eventual Consistency

Here is how it could work. When a Task processes an
estimateHoursRemaining() command it publishes
a corresponding domain event. It does that already, but the
team would now leverage the event to achieve eventual
consistency. The event is modeled with the following
properties:

public class TaskHoursRemainingEstimated implements DomainEvent {

    private Date occurredOn;

    private TenantId tenantId;

    private BacklogItemId backlogItemId;

    private TaskId taskId;

    private int hoursRemaining;

    ...

}

A specialized subscriber would now listen for these and
delegate to a domain service to coordinate the consistency
processing. The service would:

• Use the BacklogItemRepository to retrieve
the identified BacklogItem.

• Use the TaskRepository to retrieve all Task
instances associated with the identified
BacklogItem.

• Execute the BacklogItem command named
estimateTaskHoursRemaining() passing
the domain event's hoursRemaining and the
retrieved Task instances. The BacklogItem
may transition its status depending on parameters.

The team should find a way to optimize this. The three-step
design requires all Task instances to be loaded every time
a re-estimation occurs. When using our BOTE and advan-
cing continuously toward done, 143 out of 144 times that's
unnecessary. This could be optimized this pretty easily. In-
stead of using the repository to get all Task instances,
they could simply ask it for the sum of all Task hours as
calculated by the database:

public class TaskRepositoryImpl implements TaskRepository {

    ...

    public int totalBacklogItemTaskHoursRemaining(

            TenantId aTenantId,

            BacklogItemId aBacklogItemId) {

        Query query = session.createQuery(

            "select sum(task.hoursRemaining) from Task task "

            + "where task.tenantId = ? and "

            + "task.backlogItemId = ?");

        ...

    }

}

Eventual consistency complicates the user interface a bit.
Unless the status transition can be achieved within a few
hundred milliseconds, how would the user interface display
the new state? Should they place business logic in the view
to determine the current status? That would constitute a
smart UI anti-pattern. Perhaps the view would just display

the stale status and allow users to deal with the visual in-
consistency. That could easily be perceived as a bug, or at
least be pretty annoying.

The view could use a background Ajax polling request, but
that could be quite inefficient. Since the view component
could not easily determine exactly when checking for a
status update is necessary, most Ajax pings would be unne-
cessary. Using our BOTE numbers, 143 of 144 re-estima-
tions would not cause the status update, which is a lot of re-
dundant requests on the web tier. With the right server-side
support the clients could instead depend on Comet (a.k.a.
Ajax Push). Although a nice challenge, that introduces a
completely new technology that the team has no experience
using.

On the other hand, perhaps the best solution is the simplest.
They could opt to place a visual cue on the screen that in-
forms the user that the current status is uncertain. The view
could suggest a time frame for checking back or refreshing.
Alternatively, the changed status will probably show on the
next rendered view. That's safe. The team would need to
run some user acceptance tests, but it looks hopeful.

Is It the Team Member's Job?

One important question has thus far been completely over-
looked. Whose job is it to bring a backlog item's status into
consistency with all remaining task hours? Does a team
member using Scrum care if the parent backlog item's
status transitions to done just as they set the last task's
hours to zero? Will they always know they are working
with the last task that has remaining hours? Perhaps they
will and perhaps it is the responsibility of each team mem-
ber to bring each backlog item to official completion.

On the other hand, what if there is ever another project
stakeholder involved? For example, the product owner or
some other person may desire to check the candidate back-
log item for satisfactory completion. Maybe they want to
use the feature on a continuous integration server first. If
they are happy with the developers' claim of completion,
they will manually mark the status as done. This certainly
changes the game, indicating that neither transactional nor
eventual consistency is necessary. Tasks could be split off
from their parent backlog item because this new use case
allows it. However, if it is really the team members that
should cause the automatic transition to done, it would
mean that tasks should probably be composed within the
backlog item to allow for transactional consistency.
Interestingly, there is no clear answer here either, which
probably indicates that it should be an optional application
preference. Leaving tasks within their backlog item solves
the consistency problem, and it's a modeling choice that can
support both automatic or manual status transitions.

This valuable exercise has uncovered a completely new as-
pect of the domain. It seems like teams should be able to

- 14 -



configure a work flow preference. They aren't going to im-
plement such a feature now, but they will promote it for
further discussion. Asking 'whose job is it?' led them to a
few vital perceptions about their domain.

Next, one of the developers made a very practical sugges-
tion as an alternative to this whole analysis. If they are
chiefly concerned with the possible overhead of the story
attribute, why not do something about that specifically?
They could reduce the total storage capacity for the story
and in addition create a new useCaseDefinition
property too. They could design it to lazy load, since much
of the time it would never be used. Or they could even
design it as a separate aggregate, only loading it when
needed. With that idea they realized this could be a good
time to break the rule to reference external aggregates only
by identity. It seems like a suitable modeling choice to use
a direct object reference, and declare its object-relational
mapping so as to lazily load it. Perhaps that makes sense.

Time for Decisions

Based on all this analysis, currently the team is shying
away from splitting Task from BacklogItem. They
can't be certain that splitting it now is worth the extra effort,
the risk of leaving the true invariant unprotected, or allow-
ing users to experience a possible stale status in the view.
The current aggregate, as they understand it, is fairly small
as is. Even if their common worse case loaded 50 objects
rather than 25, it's still a reasonably sized cluster. For now
they will plan around the specialized use case definition
holder. Doing that is a quick win with lots of benefits. It
adds little risk, because it will work now, and in the future
if they decide to split Task from BacklogItem.

The option to split it in two remains in their hip pocket just
in case. After further experimentation with the current
design, running it through performance and load tests, as
well investigating user acceptance with an eventually con-
sistent status, it will become more clear which approach is
best. The BOTE numbers could prove to be wrong if in
production the aggregate is larger than imagined. If so, the
team will no doubt split it into two.

If you were a member of the ProjectOvation team, which
modeling option would you have chosen?

Summary

Don't shy away from discovery sessions as demonstrated
above. That entire effort would require 30 minutes, and per-
haps as much as 60 minutes at worse case. It's well worth
the time to gain deeper insight into your core domain.

Using a real-world example domain model, we have

examined how crucial it is to follow the rules of thumb
when designing aggregates:

• Model True Invariants In Consistency Boundaries

• Design Small Aggregates

• Reference Other Aggregates By Identity

• Use Eventual Consistency Outside the Boundary
(after asking whose job it is)

If we adhere to the rules, we'll have consistency where ne-
cessary, and support optimally performing and highly scal-
able systems, all while capturing the ubiquitous language
of our business domain in a carefully crafted model.

Copyright © 2011 Vaughn Vernon. All rights reserved.
Effective Aggregate Design is licensed under the Creative
Commons Attribution-NoDerivs 3.0 Unported License:
http://creativecommons.org/licenses/by-nd/3.0/

Acknowledgments

Eric Evans and Paul Rayner did several detailed reviews of
this essay. I also received feedback from Udi Dahan, Greg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard
Öberg.

References

[Cockburn] Alistair Cockburn; Hexagonal Architecture;
http://alistair.cockburn.us/Hexagonal+architecture

[DDD] Eric Evans; Domain-Driven Design—Tackling
Complexity in the Heart of Software.

[Pearls] Jon Bentley; Programming Pearls, Second
Edition; http://cs.bell-  labs.com/cm/cs/pearls/bote.html  

[Story Points] Jeff Sutherland; Story Points: Why are they
better than hours?;
http://scrum.jeffsutherland.com/2010/04/story-points-why-
are-they-better-than.html

Biography

Vaughn Vernon is a veteran consultant, providing
architecture, development, mentoring, and training services.
This three-part essay is based on his upcoming book on
implementing domain-driven design. His QCon San
Francisco 2010 presentation on context mapping is
available on the DDD Community site:
http://dddcommunity.org/library/vernon_2010. Vaughn
blogs here: http://vaughnvernon.co/; you can reach him by
email here: vvernon@shiftmethod.com; and follow him on
Twitter here: @VaughnVernon

- 15 -


