
Architectural Improvement by use of Strategic Level
Domain-Driven Design

Einar Landre
Statoil ASA

Business Application Services – Application
Development Center

Forusbeen 50
N-4035 Stavanger
+47 414 70 537

einla@statoil.com

Harald Wesenberg
Statoil ASA

Business Application Services – Energy
Trading Support

Rotvoll
N-7005 Trondheim

+47 995 79 083
hwes@statoil.com

Harald Rønneberg
Statoil ASA

Corporate Services -
Information Technology

Forusbeen 50
N-4035 Stavanger
+47 915 76 165

haro@statoil.com

Abstract
In this paper we present the experience gained and lessons learned
when the IT department at Statoil ASA, a large Oil and Gas
company in Norway, extended their Enterprise Architecture with
strategic level Domain-Driven design techniques and used the
extended Enterprise Architecture to improve the software
architecture of a large enterprise system.
Traditionally, Enterprise Architecture has been prescribed as the
key tool to conquer complexity and align IT development with
business priorities and strategies, but we found our Enterprise
Architecture too coarse to be practical useful at the software level.
By extending our Enterprise Architecture with context maps and
the process of context mapping valuable insight was gained,
insight that enabled better scoping of new projects and
architectural improvement of existing software in a controlled
way.
In addition, use of responsibility layers combined with context
maps reduces the perceived complexity of the architecture. Use of
other techniques such as distillation and identification of the core
domain looks promising at the tactical level of a single project,
but its value is more uncertain at the strategic level.
The key issue is that large enterprise systems do not have a single
core. On the other hand, at the project level, there should always
be a core, and the project is best of by knowing its core domain
and aim its best resources to work with the core.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms Design, Theory, Management

Keywords Domain-Driven design, enterprise architecture, context
map, responsibility layer, complexity, distillation

1. Introduction
Statoil ASA has embraced Enterprise Architecture as one of its
means to better align development of corporate IT systems with
business priorities and strategies.
One of our pioneering areas for enterprise architecture adoption
was the Wet Supply Chain (WSC). The WSC is the set of
business processes that supports Statoils sales and delivery of
crude oil, refinery products and Liquid Natural Gas (LNG) to

internal and external customers. The WSC supports a global
business operation that depends heavily on efficient IT tools.
The main cause driving the Enterprise Architecture effort in the
Wet Supply Chain is the need to replace a set of large legacy
systems with a combination of commercial packages [11] and
custom made solutions. The replacement is motivated by new
business requirements that can not be met within functional and
technical architectures of the existing systems. The endeavour is
organized as a program and the plan is to have made a complete
replacement within a timeframe of three-to-five years. The first
new systems were deployed for production in 2005.
In our attempt to develop and use the Enterprise Architecture for
the Wet Supply Chain, we found that our Enterprise Architecture
did not provide the tools needed to address key concerns when
designing and integrating large scale software intensive systems.
While enterprise architects focus on business processes, functions
and information concepts, software architects have to focus on
boundaries and interfaces.
As the work with our Enterprise Architecture correlated in time
with our adoption of Domain-Driven design [3], we discovered
that the strategic part of Domain-Driven design provided the
needed mechanisms.
Our experience report is founded on practical work done in
context of a software development project. The project objective
was to replace paper based cargo folders with a digitized archive
and follow-up capabilities.
Before we continue our experience report, a short introduction to
Enterprise Architecture and Domain-Driven design is required.

1.1 Enterprise Architecture (EA)
According to [1] Enterprise Architecture (EA) identifies the main
components of the organization, its information systems and the
ways in which these components work together in order to
achieve defined business objectives. The components include
staff, business processes, technology, information, financial and
other resources required by the business to achieve its objectives
Enterprise Architecture is based on a holistic view rather than an
application-by-application view. Most enterprises choose to do
their Enterprise Architecture work according to the practices
defined by available frameworks such as Zachman [6], TOGAF
[10] and TAFIM [9], tailored to reflect the architectural
principles, standards and reference models defined by the
individual enterprise. The frameworks typically provide an
architectural lifecycle process and a set of views supporting the

Copyright is held by the author/owner(s).
OOPSLA’06, October 22-26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

809

different stakeholder interests: business process, information,
functions and technical infrastructure [2].
The purpose of the Enterprise Architecture is to provide the
foundation to describe the need for new IT systems and strategies
for modernizing existing ones. It should provide a clear path for
acquisition of new systems and should be the natural start point
when scoping and prioritizing new projects. For this to be possible
it must be anchored in a joint business and IT vision identifying
business requirements and IT objectives [2].
Figure 1 illustrates common Enterprise Architecture building
blocks.

Business
Processes Information

Function
(Service)

Physical
System

(Technology)

Allocated to

Enterprise Architecture

Figure 1. Enterprise architecture building blocks

1.2 Domain-Driven Design
Domain-Driven design is a philosophy whose focus is the
intricacies of the domain and where the objective is to make these
intricacies explicit in the domain model and its implementation in
code. According to [4] the premise of Domain-Driven design is
two fold:

• For most software projects, the primary focus should be
on the domain and domain logic.

• Complex domain designs should be based on a model.
Domain-Driven design is not a technology or a methodology. It is
a way of thinking and a set of priorities, aimed at accelerating
software projects that have to deal with complicated domains. The
primary source for these principles is Eric Evans book [3].
Basically Domain-Driven design can be divided into three areas:
Basic building blocks – Addresses how the domain is separated
from technology by use of a layered architecture, combined with
practical object oriented design patterns.
Sophisticated models – Addresses how the software is aligned
with domain expert thinking, domain concepts are made explicit
in code and refactoring of the code is driven by domain insight.
Strategic design – Addresses model integrity and management of
complexity in large systems. Strategic design provides three core
building blocks:

• Context mapping
• Distillation
• Large scale structures

Of these building blocks context mapping is the important one
that constitute the core of this report, while distillation and large
scale structures provide useful architecting principles and
guidelines that only will be briefly touched.

2. Context Mapping
A context map is a drawing that documents modelling contexts
and their relationships. Large systems contains multiple modelling
contexts, therefore we have depicted the modelling context of
interests, not the applications or information systems that
implement the different contexts.
The context map in figure 2 depicts the situation in the Digital
Cargo File (DCF) project, with the project responsibilities on the
right hand side of the figure.

Supply
Operation

Front
Page

Document
Storage

Invoice

Filing plan

msg

Shared Kernel

Trading

Communication
Gateway

Create/update

msg Folder

Create/update

msg

Shipment
&

Allocation

msg

Filing Instruction

Create/update
Filing Instruction

Filing Instruction

End User

Compose & Send
Document control

Customer

A/C

OHS

Customer

Supplier

Supplier

Supplier

Supplier

Customer

Customer

DCF

Create/Update Filing Instruction Filing plan Msg
Figure 2. Context map – Digital Cargo File

On the left side of the context map we find three existing contexts:
Supply Operation – supporting delivery of cargo, Invoice and
Trading – supporting sales of cargos. These three contexts exist
inside different legacy systems that must be integrated with DCF.
These contexts were identified when we developed a context map
for the whole WSC as part of our extended Enterprise
Architecture effort [11].
In the middle we find the Communication Gateway, enabling the
business to send and receive email, fax and telex. The end-user is
represented to illustrate the fact that humans must operate the
communication gateway directly for two purposes: 1) Manual
sending and filing of business messages. 2) Manual filing of
inbound messages from counterparties. This operation of filing
messages is known as document control.
On the right side we find the DCF information system with its
three distinct model contexts: Front Page providing the cover
page of a physical folder – used for content follow-up and case
management, Folder providing the logical storage model and
Document Storage defining the physical document storage model.
The purpose of the DCF information system is to digitize the
process of handling unstructured information (email, fax, telex)

810

associated with actual cargo and deals, and thereby improve the
business operation. Before DCF unstructured information was
printed and stored in physical folders.
At the bottom we find Shipment & Allocation supporting oil field
operation and owner allocation of produced volumes.

2.1 Context relationships
In addition to the contexts the context map includes the actual
relationship between contexts. Here is a short introduction to the
relationships used in the map:

• Customer / Supplier means that the teams responsible
for the two contexts have a customer / supplier
relationship. Practically this implies that the supplier
context must provide what ever is required to the
customer context. This relationship is well regulated in
terms of who is responsible for what [3].

• Shared Kernel means that the code base between the
two context’s are shared. A shard kernel means that
changes made in one context most likely impact the
other. Having a shared kernel without knowing it leads
easily to undesired situations and defects. It is a take
care type relationship [3].

• Open Host Service (OHS) means that a context
provides access to its model using a defined service
interface. The documentation of any published service
should be based on the published language [3] pattern.
The purpose of the published language is to define the
translation of concepts between models. It could be
claimed that the number of OHSs indicate how service
oriented the architecture is.

• Anticorruption Layer (A/C) means that the context
with the A/C layer attached protects itself from the
context it is connected to. The purpose of the
anticorruption layer is to translate between modelling
contexts. Anti corruption layers are very similar to
Open Host Service but it is used by the context who
integrates with what to them is an alien model.
Development and deployment of anticorruption layers
involves use of application integration middleware, and
are as such expensive modelling constructs [3].

For more relationship patterns and deeper descriptions consult the
book [3]. One interesting aspect of context mapping is its
alignment with well documented systems architecting heuristics
[7] including: Don’t partition through regions where high rates of
information exchange is required, Choosing the appropriate
aggregation of functions is critical in systems design and The
greatest leverage in systems architecting is at the interface. These
heuristics, among others, guided our analysis and the subsequent
improvement process.

2.2 Context map analysis
With the context map in place it is time for analysis. The applied
analysis technique is founded on Hitchins [5] complexity theory.
According to Hitchins is complexity subjective, where the
perception of complexity is related to the combination of: variety,
connectedness and disorder. Practically this mean that a system
with low level of variety, high degree of order and low degree of
connectedness is perceived less complex than a system with high
degree of variety, lack of order and high degree of connectivity.

The project team faced a set of problems that was hard to
understand, basically because the team was overwhelmed with
details. They could not see the forest from the threes.
From analysis of the context map (Figure 2) it became clear that
most of the encountered problems were caused by two factors:

• The role of the communication gateway

• The role of the front page
Both factors drive’s the perceived complexity due to a high degree
of connectivity and disorder. The actual problems will be
discussed in the subsequent sections.

2.2.1 The role of the communication gateway
The communication gateway had been operational for years when
the digitized archive was envisioned. Inbound and outbound
messages were printed and filed into the correct cargo folder
whose front page was updated to reflect the changed state of the
folder. As a curiosity its worth mentioning that the folder filled
the role as relay-stick used to pass the “case” from cargo
operation to deal handling. Users found needed folders by
inspecting each others desk, i.e. the folder fulfilled a role as a
human workflow tool.
In addition to provide transmission of messages, the
communication gateway was responsible for tracking received
and sent messages. This was known as document control. Users
interacted directly with the communication system. It was
assumed that the introduction of a digitized archive should
support the same work practice.
When the project started to integrate with the communication
gateway it was overwhelmed by problems such as:

• The need to replicate filing information into the
communication gateway for the purpose of filing. I.e.
provide archive references.

• The need to extend the communication gateway with
additional user interfaces for the purpose of filing
manually sent and received messages into the archive.

• Complex interface and information flows between front-
end systems (Trading, Operation), the communication
gateway and the DCF.

In the context map most of these problems materialize as complex
dependencies between contexts (Figure 2), i.e. the high level of
connectivity.

2.2.2 The role of the front page
In the paper based cargo file system the front page represented the
key tool for follow-up of the actual folder (case). The front page
contained aggregated cargo and deal information originating from
the Supply Operation and Trading contexts respectively,
combined with relevant information about the communication
with the actual counterparties. The actual information was written
in hand on the physical front page of the folder.
Front page content combined with which desk the folder resided
on provided the required workflow support in the paper based
operation. When the paper based folder was removed the need for
workflow support was still there, and the needed capabilities had
to be provided by DCF.
The project decided to provide the required capabilities by
implementing the front page concept as an integral part of the
archive. The front page was updated automatically by Trading and

811

Supply Operation. Further the front page was extended with
annotations to allow the users to use the front page as a
scratchpad. The situation was further complicated as each
business unit had their own variant of the front page but the
project managed to convince the users to standardize on a limited
number of variants. In the end there was one front page type for
crude oil, one for refined products, one for liquid gas and one
generic to support the remaining needs.
After deployment of the first version of DCF the business have
requested more advanced case management and workflow
capabilities. These requests indicate that the attempted
implementation of the paper based front page concept did not
provide the needed capabilities. Basically the users need a
workflow system that monitors change and involves them when
human attention is required.

2.2.3 Synthesis
With the context map in our hands, analysis of encountered
problems turned out to be easier as the cause of problems became
visible. They directly related to unhealthy structures in our
architecture:

• Having the communication gateway as a spider in the
web became counterproductive when moving from a
paper based archive to a digital archive. The different
links to the communication gateway represents only the
top of the iceberg.

• Extending the archive with case management
capabilities polluted the archive with functionality not
related to its prime objective: filing and retrieval of
documents.

Based on analysis of the current situation a new context map
reflecting a to-be picture was established and later used to scope a
new project. The new projects objective is improved software
architecture, case management and document control capabilities.
The improved context map was developed in workshops using a
smart-board for efficient documentation of the process and its
results.

2.3 Recommended changes
As stated in the previous section a new context map reflecting
how we wanted our architecture to look like was developed. The
key changes are:

• Front page concept is separated from the Folder context
using Open Hosted Service and extended to provide
more sophisticated workflow and case management
capabilities.

• Document control moved from the Communication
Gateway to the Folder context and the context is
renamed to Folder and Document Control.

• Front end systems interact with the Folder context
through the Filing Service.

The actual changes are illustrated in figure 3 and described in
more detail in the subsequent sections. The effect of the suggested
changes is reduced connectivity and thereby a less complex
architecture compared with figure 2.

Figure 3. To-be context map

2.3.1 Front page and case management
Since the Front Page aggregates deal and cargo information that
belongs to Trading and Supply Operation contexts for the purpose
of case management, we decided to separate the Front Page
context from the Folder context by introducing a service (Filing
Service in figure 3).
With respect to Supply Operation and Trading the Front Page is
protected from these two legacy contexts using anticorruption
layers.
The Front Page interacts with Folder & Document Control
through the Filing service (Figure. 3). This ensures loose coupling
and facilitates a more service oriented architecture.
The main benefits from separating the Front Page from the
Folder & Document Control are reduced coupling and more
cohesive contexts with defined responsibility and interfaces.

2.3.2 Document control
Document control is the name of the capability enabling users to
file inbound messages into the archive. Due to historical reasons
document control was part of the responsibility of the
Communication Gateway. By moving document control from
Communication Gateway and merge it with the Folder context
two important improvements can be achieved:

• Users do not need to interact with the Communication
Gateway improving their operational efficiency.
Average time used to file an inbound message is
estimated to be reduced by 30 seconds/message. With
1000 messages a day, this adds up to more than 8
working hours a day, time that can be spent on more
productive activities than filing messages into the
archive.

• Front end systems (Trading, Invoice, etc) do not need to
interact with both the communication gateway and the
folder contexts, reducing the number of couplings by 4,
from 12 to 8.

The impacts of these changes are clearly visible in figure 3.

812

2.3.3 Filing and communications service
Domain-Driven design advocates a principle called intention
revealing interfaces. In a context map such intention revealing
service is expressed as an Open Hosted Service (OHS). The nature
of an OHS is described in section 2.1 and more details can be
found in [3].
The project decided to use an OHS as access point to the Folder
& Document Control context. The benefit from an OHS is that the
interface is documented and published as a first order design
artefact that facilitates reuse and loose coupling.
The OHS pattern is in line with the principles of service oriented
architecture (SOA) [8] and systems architecting heuristics with
their focus on interfaces and boundaries [7].

2.4 Summary
We have now been through how context mapping and context
relationships can be used to analyse and improve software
architecture.
We have also seen that the actual contexts are derived from our
extended Enterprise Architecture, and thereby turning the
Enterprise Architecture into a useful tool for software architecture
improvement.
Context mapping for model integrity represents the first leg in
strategic level Domain-Driven design. In the next two sections
distillation and large scale structures will be briefly touched.

3. Distillation
Distillation is about separating the important from the less
important [3]. Ideally it should be possible to identify the problem
area that motivates development of this actual software. That part
of the domain is called the core domain. To be able to keep the
core as small as possible, some domain related functionality
should be moved out of the core, allowing us to let our most
skilled people focus on the core [3].

This moved out part of the domain is called supporting domain(s).
That means it addresses domain specific concepts, but the
required capabilities need only to be good enough. There is no
need for a sophisticated model [3].
The last kind of software is the one that is required but does not
address any domain specific knowledge at all. Such software is
called generic sub-domain(s). This software should, when
practical, be based on commercially available packages [11] or
open source offerings.
Applying distillation on the content of the context map in figure 3
the following story could be told:

• Front Page / Case Management enables the business to
manage cargos and deals with respect to communication
with shippers and counterparties, and supports the
primary business processes related to cargo and deals
within the Wet Supply Chain. In context of digital cargo
files this makes it the core domain. It is these
capabilities that justify the digital cargo file project.

• Folder & Document Control contain domain specific
information as folders and sections reflect the way the
business views documents in context of deals and
cargos and tracks the state changes attached to
documents sent and received from counterparties. This
makes it a supporting domain in context of digital cargo
files project.

• Communication Gateway and Document Storage does
not contain any domain specific information, and the
actual implementations are based on commercial
available products. They are classical examples of
generic sub-domains.

To understand the difference between the core, supporting and
generic domains is critical as resources should be prioritized into
development of the core, and supporting domains should be just
good enough, potentially outsourced or procured. Improvements
of supporting domains should be motivated from documented
benefits in the core [3].
Experience indicate that distillation at the enterprise level is hard,
why is trading more core than supply operation? On the other
hand, there are concepts inside trading that are more crucial than
others, and being able to find and prioritize these concepts sounds
as a good idea. The effect of this discovery is that distillation
seams to be more a tactical than strategic tool.

4. Large Scale Structures
Context maps are valuable tools to ensure model integrity at both
system and project level. The challenge though is that for a large
domain the context map itself become complex and unmanageable
as the forest cannot be seen for the trees.
There are two elements from the large-scale structures that have
proven valuable: the principle of evolving order and the use of
responsibility layers.
Evolving order is a design philosophy founded on the fact that up-
front designs, not based on experience, tend to fail. The message
of evolving order is that conceptual large scale structures should
evolve, and reflect our understanding of the domain at hand. The
large scale structures should not constrain designs and model
decisions that require detailed knowledge [3].

Responsibility layers address the need to handle large swaths of
the domain in a coherent way. Its principles are derived from the
architectural layering patterns, but applied on a more abstract
level. The naming conventions applied for the different
responsibility layers reflect the way we choose to think about the
domain at hand [3].
Figure 4 illustrates how the context map from figure 3 can be
reorganized into a layered representation. The placement of
contexts in the different layers illustrates the responsibilities found
in the WSC [11].
With the responsibility layers in place it might be easier to explain
why the Front Page should be separated from the Folder context.
The two contexts resides in different responsibility layers.
Another discussion that might originate from figure 4 is in which
layer should hold the Front Page context. Is it part of Operation
or Decision Support? We leave it for the principle of evolving
order to sort out in the future.

The experience with use of responsibility layers from the COTS
evaluation [11] indicate that use of responsibility layers simplifies
communication with stake holders, because they reduce perceived
complexity by introduction of more order [5].

813

Trading

Communication
Gateway

Document
Storage

Folder
&

Document Control

Front Page
Case

Management

Supply
Operation

Decision
Support

Capabilities

Operation

Invoice

Shipment
&

Allocation

Infrastructure

A/CA/C

Filing Service
(OHS)

Communication Service
(OHS)

Document Storage Service
(OHS)

Figure 4. Responsibility layers illustrated

5. Conclusion
The experience from our use of strategic level Domain-Driven
design is that context maps and the activity of context mapping
can improve the quality of the Enterprise Architecture and its
derived software architectures as well.
Another finding is that being able to identify the projects core
domain is important with respect to how to utilize development
resources, and how developers chooses to think about the software
under development. As an example, accepting that the core
domain in Digital Cargo Files is found in the Front Page / Case
Management context, and not in the document storage model
increases the developers understanding of the software and its
future use.
The encountered challenge is for the business to agree on what is
most important, where one of the discoveries is that in large scale
systems such as the WSC there will be multiple cores.
The third finding was that the combination of context maps and
responsibility layers reduces the perceived complexity.
In summary our experience is that strategic level Domain-Driven
design can be used to enhance Enterprise Architectures and the
derived software architectures.

5.1 Further work
It is our perception that the use of context maps and their role in
architectural improvement is well understood. As an example the
DCF system will be refactored in the fall 2006 to match the
suggested recommendations found in this paper. Statoil has also
formally adopted use of context-maps as an architectural artefact.

When it comes to use of distillation and large scale structures and
their potential role in Enterprise Architecture and derived software
architectures are not truly understood, but use of responsibility
layers seems to reduce the perceived complexity [5].
In the case of distillation it might be argued that the technique is
more tactical than strategic. Shipment & Allocation (Figure 4)
represented a 20.000 hour development effort. Knowing which
parts of that large chunk of software is its core is important for the
development project as it should focus its effort on those parts. A
discussion whether Shipment & Allocation is part of the core of
the WSC or not, feels meaningless.
With respect distillation and large scale structures we only have
scratched the top of the iceberg, and we invite other researchers
and practitioners to participate in further research.

6. Acknowledgments
Our thanks go to: Eric Evans for his insights and

contributions with respect to the content of this paper. We also
would like to thank him for being a skillful mentor and coach. In
addition, we would also like to thank Olaf Zimmermann and the
ACM rehearsal staff for their contributions, and at last but not
least, our colleges at Statoil for all the constructive and
demanding discussions.

7. References
[1] Armour., Kaisler. and Y. Liu. A big picture look at enterprise

architecture, IEEE IT Pro January/February 1999.
[2] Armour., Kaisler. and Valivullah. Enterprise Architecting:

Critical Problems, IEEE Proceedings of the 38 Hawaii
International Conference on Systems Sciences – 2005.

[3] Evans E., Domain-Driven Design, Tackling Complexity in
the Heart of Software, Addison-Wesley, 2003, ISBN 0-321-
12521-5.

[4] Domain-Driven design, http://domaindrivendesign.org.
[5] Hitchins D. K. Advanced Systems, thinking, engineering and

management, Artech House, 2003, ISBN 1-58053-619-0.
[6] Zachman J., http://www.zifa.com.
[7] Rechtin E. and Maier M. The art of systems architecting,

CRC Press, 2002, ISBN 0-8493-0440-7.
[8] Service Oriented Architecture (SOA),

http://en.wikipedia.org/wiki/Service_oriented_architecture.
[9] TAFIM, http://www.sei.cmu.edu/str/descriptions/tafim.html.
[10] TOGAF, http://www.opengroup.org/architecture/togaf.
[11] Wesenberg, H., Landre, E., and Rønneberg, H. Using

Domain-Driven Design to evaluate commercial-off-the-shelf
software, OOPSLA 2006.

814

