
1

IAnticorruption – A Domain-Driven Design

Approach To More Robust Integration

Sam Peng Ying Hu

speng@customhouse.com yhu@customhouse.com

ABSTRACT

Custom House's new currency exchange system is integrated with a legacy system. After a few

years of growth, the two systems were so intricately tangled that even small changes made in the

integration layer would have unpredictable side effects. Refactoring on the integration layer was

risky and time consuming. The situation called for a revolutionary redesign.

The solution was to introduce an anticorruption layer to isolate the two systems. This layer

encapsulated the translation of conceptual objects and actions between the two systems, insulating

the domain layer from knowing the existence of the other system. By freeing the domain layer

from performing tasks that were only relevant to the other system, the anticorruption layer allowed

additional external systems to be integrated without requiring any changes to the domain layer

itself. Full implementation of an anticorruption layer reduced overhead of legacy integration from

30% of total development to 10%.

The biggest challenge in implementing the anticorruption layer is to control the complexity of

translation work. This was managed in an innovative way: by building an object model reflecting

the implicit model of the legacy system. Our experiences show that an external system need not be

object-oriented for its model to be adequately abstracted, and this has proven to be the key to a

clean and extensible translation.

Keywords

Domain-Driven design, anti-corruption layer, domain model, integration, observer pattern

BACKGROUND

Like most enterprise software applications, Custom House’s new currency exchange system needs

to integrate with a legacy back office system to fully support business workflow. The new system

(SPOT) handles most front-end online transactions. When a currency exchange transaction is

booked through SPOT, information needs to be sent to the back office for further processing,

which is handled by a legacy system (TBS).

While SPOT is a multi-tier Microsoft .NET enterprise application built with object-oriented

technologies, TBS is a Microsoft FoxPro application based on tables and records.

INTEGRATION

To centralize data conversion logic and cross-platform communication, we built a component

2

called TBSExport as a gateway between SPOT and TBS.

SPOT

Order Processing Customer Management

TBSExport TBS

Figure 1. Dependency between SPOT and Tbs in old design

(Among the numerous types of information SPOT sent to TBS, we show only two of the most

important types here, Order and Customer, to simplify the discussion.)

The TBSExport component would take generic data structures as input (in the form of .NET

DataSets), convert them to a TBS-recognizable format, then output them to TBS. For example,

when an order was booked, SPOT would build a dataset containing information about the booked

order, then call TBSExport:

public class OrderManager

{

public void BookOrder(Order order)

{

 //…book order and update order entry in database

 DataSet orderDataSet = OrderDataSetBuilder.BuildTbsDataSet(order);

 TbsExport.ExportOrder(orderDataSet);

}

}

 (code example 1)

TBSExport, on receiving this request, would delegate to one of several concrete exporters for

processing and communication.

CORRUPTION

The initial design worked for a while. But as both SPOT and TBS evolved to support new features,

integration became a heavy burden. Developers found translation between the two systems hard to

understand. Two years after the first release of SPOT, tasks related to TBSExport were consuming

nearly 30% of our total development effort! Our QA team considered it one of the most buggy and

brittle areas in the system. Finally, one project was deemed hopeless due to a significant

TBSExport enhancement requirement. Both managers and developers screamed for a

revolutionary redesign.

So what went wrong?

1. SPOT domain was highly coupled to TBS

From code example 1, we see that SPOT does two things when sending information to TBS:

1. Build a dataset containing specific data

3

2. Call an exporting service defined in TBSExport component

In step 1, SPOT domain objects converted themselves into datasets. Because the conversion code

was littered throughout the domain objects themselves, it obscured the real business logic of those

objects and made them much bulkier than they should have been. Later, we isolated most of the

conversion code in separate classes, such as OrderDataSetBuilder. This did save domain objects

from being swamped, but the domain layer was still sprinkled with converters that contained no

SPOT business logic.

In step 2, it was SPOT’s responsibility to initiate exporting. This required a reference to

TBSExport in almost all major SPOT operations, such as customer creation, order booking,

payment releasing etc. At first, this dependency only existed in a service layer that handled

workflow. But before long, it crept into domain layer too, causing SPOT domain objects to be

modified to contain TBS specific knowledge. The “BankDeposit” class, for instance, had an

internal member “TBSFile” – a type defined inside the TBSExport component.

public class BankDeposit

{

 TBSFile tbsFile;

 public void DoDeposit()

 {

 // domain logic for deposits…

 tbsFile.Export();

 }

}

Such coupling between SPOT and TBSExport caused maintenance headaches.

� SPOT domain logic was difficult to test in isolation.

� Unit tests for TBSExport required complicated setup to prepare SPOT objects.

� Bugs related to exporting logic were time-consuming to track and fix. A simple change

in TBS could cause unexpected issues in SPOT and vice versa.

2. Translation was done at a low level of primitive data types

TBSExport exposed interfaces that accepted datasets. These datasets were like a flattened version

of SPOT objects. OrderDataSet, for example, contained bits and pieces of information extracted

from SPOT Order object. Upon receiving datasets, TBSExport needed to further interpret and

process them to produce data understandable to TBS.

The translation logic was so complicated because SPOT and TBS are based on two very different

models. In SPOT, an “Order” is an aggregate containing one to many “Line Items”. Each “Line

Item” is associated with one to many “Contracts” by a “Drawdown” object. When exporting an

order to TBS, information about the order, line items, drawdowns and contracts were all bundled

into an OrderDataSet.

4

TBS, by contrast, uses a flat table structure to represent different types of “currency exchange

deal”. Each TBS deal is one record in the table. The SPOT concepts don’t exist in TBS, so

mapping logic would convert a SPOT contract into two deal records, a SPOT line item into one

deal record, and a SPOT drawdown into two deal records. A SPOT order was indirectly mapped to

multiple records.

Order

LineItems DrawDown

Contract

1

*

1 *

*

1

OrderDataSet

Order

Table

LineItemTa

ble

DrawDownT

able

ContractTab
le

payment1B2

payment1B1

payment1A1

drawdown1B

drawdown1A

contract1B

contract1A

TBSDealID TBSCustomerID Amount Other Columns

TBS Data

Figure 2. Old translation

Both OrderDataSet and the TBS deal table were structures containing only primitive datatypes,

like strings and integers. Translation logic had to understand their meaning in both contexts, and

figure out the intricate associations between them. Such a low level field-to-field mapping was

laborious and error prone, containing numerous details and subtleties, and duplicating logic across

the two systems [3]. The mapping logic in OrderExporter alone had over 3000 lines of code.

This complexity was one of the worst sources of confusion that made the component

unmanageable.

3. Business logic was tangled with technical details in TBSExport

The TBSExport component contained a group of Exporter classes at its core:

+ExportData(in data : DataSet)

#OutputToDatabase()
#PopulateTBSDataTable()

-tbsDBConnection : OleDbConnectiion

-tbsData : DataTable

TBSExporterBase

CustomerExporterOrderExporter OtherExporters

Figure 3. Old TbsExport design

5

The abstract base class, TBSExporterBase, provided implementations to physically create and

save output data files. Each subclass had to override “PopulateTBSDataTable()” to do specific

translation and “OutputToDatabase” to perform corresponding database operations. These two

operations were of very different types. One handled business logic (making TBS deal records)

while the other was purely technical (saving those records to disk). Here is an example of how

these mixed responsibilities complicated the class itself and fragmented business logic in data

rows, data tables and database connections:

public class CustomerExporter

{

protected override void PopulateTBSDataTable(DataSet dataSet)

{

 DataRow drSpotCustomer = dataSet.Tables[0].Rows[0];

 DataRow drTBSCustomer = tbsData.NewRow();

 drTBSCustomer[COMPANY] = drSpotCustomer["CompanyName"];

 //......more

 tbsData.Rows.Add(drTBSCustomer);

}

 protected override void OutputToDatabase()

 {

 OleDbCommand dbCommand=new OleDbCommand(tbsDBConnection);

 //…

 foreach (DataRow dataRow in tbsData.Rows)

 {

 dbCommand.CommandText= BuildQueryString();

 dbCommand.Parameters[COMPANY].Value= dataRow [COMPANY];

 //…more

 dbCommand.ExecuteNonQuery();

 }

 }

}

REDESIGN - CREATING AN ANTICORRUPTION LAYER

TBSExport was so intricately tangled with the SPOT domain that when it needed to be

significantly extended, developers would dread touching that part of the code. In December 2005,

the team decided that incremental refactoring would not be sufficient because unpredictable side

effects made even small changes risky and time-consuming. The integration layer between SPOT

and TBS needed major surgery, and we decided we would rather bite the bullet. With help from

Eric Evans and the Domain Language team, our entire team – project managers, developers and

QA – started to work on TBSExport redesign. We decided on the following strategy:

• Implement a new TBSExport gateway component as a spike. It must be self-contained

and stand-alone. Make sure this new component is well designed and thoroughly unit

6

tested;

• Create a mechanism to connect this component to SPOT, but in a loosely coupled fashion

(so SPOT won’t know about it);

• When satisfied that the new mechanism is behaving properly, switch the new component

“on” inside SPOT, and do integration and regression testing;

• Finally, delete all the old TBS exporting code, leaving only the new, decoupled design.

This plan enabled us to build an entirely new component from a clean slate without breaking

existing functionality, so that our system wouldn’t be in an unworkable state for very long. It also

enabled us to run the old and new code side-by-side until we were satisfied that the new

component was ready.

The most important design decision was to make TBSExport a true anticorruption layer standing

between SPOT and TBS. An anticorruption layer “is not a mechanism for sending messages to

another system. Rather, it is a mechanism that translates conceptual objects and actions from one

model and protocol to another.” [2] In other words, we wanted our new component to be an

isolating layer that consumed SPOT domain objects directly – leaving SPOT itself blissfully

ignorant of any translation work or any model besides its own – and completely encapsulate

translation logic. To achieve this, we did the following:

1. Define a new TBSExport façade interface that fits into the SPOT model

Compare the two interfaces:

Before public void ExportOrder(DataSet orderDataSet);

After public void OnOrderBooked(Order order);

The old interface required SPOT to convert its objects into a DataSet. The new interface simply

accepts the SPOT domain object as a parameter. Thus SPOT is only required to implement

interfaces in its own language, rather than to do something foreign such as “export this dataset”.

2. Discover the TBS model and re-abstract TBS’s behavior

The legacy TBS system is not object-oriented by nature. This by no means implies that it doesn’t

have a model, just that the model is buried in various data records and hinted at in procedures. We

found it necessary to discover TBS’s model in order to explicitly express the semantics on TBS

side. In our Order export example, even though there is no explicit TBS deal record to match a

SPOT order, a conceptual order that links a series of TBS objects does exist in TBS:

TbsOrder TbsSettlement

Net NonNet

1 1

*
1 *1

.....

1

1 *

1

.....

1

1 *

1

Figure 4. Our representation of the implicit TBS model

Once we had written code to express the TBS model, we could translate a SPOT order into its

7

equivalent on the TBS side:

public class TbsOrderTranslator

{

public TbsOrder TranslateSpotOrder(Order spotOrder)

 {

 TbsOrder tbsOrder = new TbsOrder();

 tbsOrder.Customer = MakeTbsCustomerId(spotOrder.CustomerId);

 tbsOrder.Branch = spotOrder.Branch.BranchCode;

 //….more

 tbsOrder.Settlement = ComputeSettlement(tbsOrder);

 return tbsOrder;

 }

}

Having such a “TbsOrder” object in TBSExport was a breakthrough. It became a key to

understanding the associations among a group of TBS objects. It enabled us to translate between

two object models rather than manipulating primitive data, taking full advantage of each model’s

ability to represent its data meaningfully. Now we were able to speak to each model in its own

language.

A subsequent step then maps TBSOrder to TBS records. This is a straightforward, mechanical

mapping, involving no complex business logic. All that had been taken care of when translating

from the SPOT to the TBS model..

3. Separate TBS platform-specific communication details from object

translation logic.

Unlike the old Exporter classes that mixed translation with communication, we built the new

TBSExport component in three layers, each of which has one and only one responsibility:

• Translators translate SPOT objects to TBS objects;

• Record generators build TBS data records out of those objects;

• File writers output those records to physical dbf files.

Here’s an example of how a SPOT order is put through each of those layers in turn, resulting in a

complete TBS export:

 public void OnOrderBooked(Order order)

 {

 //1) Translate Spot Order to TBS Order:

 TbsOrder tbsOrder = new SpotToTbsOrderTranslator(order).TranslateSpotOrder();

 //2) Create TBS specific data structure from TBSOrder:

 TbsTable tqrTable = new OrderTqrGenerator(tbsOrder, database).GenerateOrderTqrTable();

 //3) Write TBS Files

 GetTbsFileWriter(tqrTable).Write();

 }

8

The entire TBSExport component structure is shown below:

TBSExport

T
B
S
E
x
p
o
rt
 F
a
c
a
d
e

TBS
Objects

Data in TBS

Specific Data

Structure

Physical TBS

Data Files
SPOT
Objects

SPOT TBSTBS File WriterTBS Record
Generator

SPOT-TBS

Translator

Figure 5. New TBSExport design

Among the many benefits of this separation, it is easy to unit-test each stage of the export process.

When bugs occur, we pinpoint them quickly.

4. Invert dependency from SPOT components to TBSExport.

In the old design, it was SPOT’s responsibility to push information into TBSExport. This

demanded that SPOT know when and how to call TBSExport, resulting in many SPOT objects

holding reference to TBSExport and knowing a great deal about TBS. This “push” approach was

problematic because it burdened SPOT – which is already a complex system containing much

business logic – with responsibility for external systems not core to its domain. Furthermore, there

were still other external systems needing integration with SPOT in the near future, and were this

to be implemented in the same fashion, SPOT would be overwhelmed.

A better alternative is the observer pattern approach – with TBSExport being notified when certain

events happen in SPOT. We implemented the observer pattern using .NET events.. Our

implementation was made simpler by a particular feature that allows events to be defined “static”,

at class level rather than instance level. This technique enabled us to hook up SPOT events with

TBSExport handlers in a single centralized location, at server startup time, long before any object

instances are created. It also gave us the flexibility to configure test projects differently.

SPOT

Order Processing Customer Management

Firing Event

Event Subscription

TBS

Event Subscription
Firing Event

TBSExport

Figure 6. Dependency between SPOT and Tbs in new design

9

For example, OrderManager has a static event that is triggered when any order object is booked:

 public class OrderManager

 {

 public static event OrderEventHandler OrderBooked;

 public void BookOrder(Order order)

{

 //…book order and update order entry in database

 If (OrderBooked != null)

 OrderBooked(order); //fire event

}

 }

Unbeknownst to SPOT, TBSExport subscribes to this OrderBooked event:

public class TbsExportManager

{

public void SubscribeToSpotEvents()

{

 OrderManager. OrderBooked += new OrderEventHandler(OnOrderBooked);

 //subscribe to other SPOT events

}

}

When an order is booked, OrderManager simply raises the OrderBooked event. It no longer has

any knowledge of the consequences of this outside its own sphere. When TBSExport, which

subscribes to this event, gets notified, its own OnOrderBooked() method is called, and the export

process takes place. This design inverted the dependency, freeing SPOT from knowing anything

about external systems. It also allowed additional external systems to receive the information they

needed from SPOT, without requiring any changes to SPOT itself.

All the above design changes led to the point where we could remove every single reference to

TBS from the SPOT domain layer.

CONCLUSION

The original design to create the TBSExport component as an integration gateway was a common

practice. It worked ok at the beginning. However, as the pair of systems evolves, not only did the

complexity of TBSExport grew out of control, the gateway also led TBS knowledge into SPOT

domain layer, burdening it with responsibilities beyond its own sphere. The key cause is that the

gateway didn't completely encapsulate the translation logic between SPOT and TBS, resulting two

very different conceptual models crossing each other’s boundary.

The solution is to re-design the TBSExport as a true anticorruption layer, isolating SPOT from

TBS such that TBS knowledge doesn't leak into the SPOT business domain and vice versa. Our

implementation of such layer contains the following key items:

10

� TBSExport provides services that speak SPOT domain language. Its interfaces to SPOT

take domain objects like Order and Customer.

� TBSExport completely encapsulates translation logic between SPOT objects to TBS

data records. The translation complexity was managed in an innovative way: by first

abstracting the implicit model of TBS, not in its entirety but just to the extent required

for translation. Our experiences show that an external system need not be

object-oriented for its model to be adequately discovered and expressed, and this has

proven to be the key to a clean and understandable translation.

� Translation logic is separated from low-level communication details.

� SPOT domain objects don't reference and depend on TBSExport; TBSExport is loosely

coupled to the SPOT domain through an observer pattern.

After the redesign, the TBSExport component has become a complex piece of software in its own

right, but in a well-encapsulated and decoupled form that is easier to maintain. The remodeling

project took a 4-6 team 6 weeks to finish. Yet the effort was soon paid off. Subsequent projects

report less than 10% of total effort on TBSExport (66% less than the original), and the days when

developers feared to approach that part of the system are long past.

ACKNOWLEDGEMENT

We would like to thank Heather Regehr for the support from management; Eric Evans for his

insights and inspiration; Daniel Gackle for his contribution to both the project and this paper,

Brenda Lowe and our QA team for the excellent team work, Taj Khattra, Alex Aizikovsky, George

Zhu, Todd Ariss and the entire Custom House development team for their effort that made the

project successful.

REFERENCE

[1] Eric Evans, Domain-Driven Design, Tackling Complexity in the Heart of Software, Addison-Wesley, 2003,

ISBN 0-321-12521-5.

[2] Ying Hu and Sam Peng, So We Thought We Knew Money, available from

http://www.domaindrivendesign.org/practitioner_reports/hu_ying_2007_01.html

